Single-molecule electrochemical gating in ionic liquids.

نویسندگان

  • Nicola J Kay
  • Simon J Higgins
  • Jan O Jeppesen
  • Edmund Leary
  • Jess Lycoops
  • Jens Ulstrup
  • Richard J Nichols
چکیده

The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through -(CH(2))(6)S- groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning tunneling microscopy (STM) molecular break junction configuration. As the electrode potential is swept to positive potentials through both redox transitions, an ideal switching behavior is observed in which the conductance increases and then decreases as the first redox wave is passed, and then increases and decreases again as the second redox process is passed. This is described as an "off-on-off-on-off" conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational relaxation. Using this view, reorganization energies of ~1.2 eV have been estimated for both the first and second redox transitions for the pTTF bridge in the 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIOTf) ionic liquid environment. By contrast, in aqueous environments, a much smaller reorganization energy of ∼0.4 eV has been obtained for the same molecular bridge. These differences are attributed to the large, outer-sphere reorganization energy for charge transfer across the molecular junction in the RTIL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-situ preconcentration, and electrochemical sensing of zinc(II) and copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology

A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane was divided into pieces of 2 c...

متن کامل

In-situ preconcentration, and electrochemical sensing of Zinc(II) and Copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology

A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane divided into pieces of 2 cm, t...

متن کامل

Break junction under electrochemical gating: testbed for single-molecule electronics.

Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and ...

متن کامل

Voltammetric Determination of Tryptophan Using a Carbon Paste Electrode Modified with Magnesium Core Shell Nanocomposite and Ionic Liquids

A novel carbon paste electrode modified with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and magnetic core-shell manganese ferrite nanoparticles (MCSILCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electro-oxidation of tryptophan, is described. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammet...

متن کامل

Highly-effective gating of single-molecule junctions: an electrochemical approach.

We report an electrochemical gating approach with ∼100% efficiency to tune the conductance of single-molecule 4,4'-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 40  شماره 

صفحات  -

تاریخ انتشار 2012